一、复数虚部带不带i?

复数虚部不需要带符号i。

复数x被定义为二元有序实数对(a,b),记为z=a+bi,这里a和b是实数,i是虚数单位。在复数a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。

若z=a+bi(a,b∈R),则共轭复数=a-bi(a,b∈R)。共轭复数所对应的点关于实轴对称。两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。

扩展资料:

1、复数的加法法则:

设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即:

2、复数的乘法法则:

把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。即:

二、复数实部和虚部是什么怎么表示

实部与虚部是数学名词“复数”中的一个概念,把形如z=a+bi(a,b均为实版数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。

扩展资料

复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的'和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。

复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。两个复数的积仍然是一个复数。

利用傅立叶变换可将实信号表示成一系列周期函数的和。这些周期函数通常用形式如下的复函数的实部表示。

三、复数的虚部包括i吗?

不包括!a+bi .a、b为实数,i 为“虚数单位”,a、b分别叫做复数a+bi的实部和虚部.当b=0时,a+bi=a 为实数;当b≠0时,a+bi 又称虚数;当b≠0、a=0时,bi 称为纯虚数.实数和虚数都是复数的子集.

四、复数的虚部包括i吗?

不包括!a+bi 。a、b为实数,i 为“虚数单位”,a、b分别叫做复数a+bi的实部和虚部。当b=0时,a+bi=a 为实数;当b≠0时,a+bi 又称虚数;当b≠0、a=0时,bi 称为纯虚数。实数和虚数都是复数的子集。

五、虚部带不带i

不带

形式如a+bi的数叫做复数。其中a和b是实数。a又叫做复数的实数部分,bi叫做虚数部分。 在现行的教材中,在复数a+bi中,a叫做实部,b叫做虚部。 这样看来,“虚数部分”bi包括虚数单位在内;“虚部”不包括虚数单位,仅仅是虚数部分中的实数b,这两个概念是有区别的。

六、复数的虚部是什么?

对于复数z=x+iy,其中x,y是任意实数,y称为复数z的虚部。

y=Im z。在笛卡尔直角坐标系中,y轴的值为虚部。利用实部和虚部可以判断两个复数是否相等,定义共轭复数,计算复数的模和辐角主值。

纯虚数:实数部分为零的复数被认为是纯虚数,即x=0。

实数:虚数部分为零的复数是实数,即y=0。

来源:

虚数单位“i”首先为瑞士数学家欧拉所创用,到德国数学家高斯提倡才普遍使用。高斯第一个引进术语“复数”并记作a+bi。“虚数”一词首先由笛卡儿提出。早在1800年就有人用(a,b)点来表示a+bi,他们可能是柯蒂斯、棣莫佛、欧拉以及范德蒙。

以上内容参考:百度百科-复数