一、矩阵的逆矩阵公式
a的逆矩阵公式:A^-1=(A*)/|A|。设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得空搭:AB=BA=E,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科蚂漏中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以闷亏烂在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
二、概率论请教!副对角线矩阵的逆矩阵应该如何求呢?谢谢大神~
这都是并前有基本公式的
副对角线方阵的逆矩阵
仍然是副对角线方阵
只明祥要把原方阵绝槐清的元素都取倒数
再把顺序全部调换即可,即为
0 0 …0 1/an
0 0 …1/a(n-1) 0
…
0 1/a2 …0 0
1/a1 0 …0 0
三、副对角线矩阵的逆矩阵公式是什么?
用原矩阵与这个逆矩阵,按普通矩阵乘法,乘一下,就可以发现,得到单位矩阵,于是结论成立。
简单来说,矩阵是充满数字的表格。
A和B是两个典型的矩阵,A有2行2列,是2×2矩阵;B有2行3列,是2×3矩阵;A中的元素可用小写字母加行列下标表示,如a1,2 = 2, a2,2 = 4。
其他非数学应用
1、在工程中,对角支架是用于支撑矩形结构腊掘蔽(例如脚手架)的梁以承受推入其中的强力;虽然被称为对角线,但由于实际考虑,对角线通常不连接轮州到矩形的角部。
2、对角线钳是指刀口切割边缘所定义的钢丝钳,它与关节铆钉相交于一个角度或成“对角线”,因此得名。
3、对角线捆绑是用于将翼梁或杆结合在一起的绑扎类型,使得绑带以一定散渣角度交叉在杆上。
4、在英式足球中,对角线控制战术是裁判和助理裁判将自己定位在球场四个象限中的一个位置。
四、逆矩阵怎么求?
口诀如下:
逆矩阵口诀是主对角线对换,副对角线符号相反。具体含义是主对角线上的两个元素对换位置,次对角线上的每个元素仅仅增加一个负号,然后除以悉告矩阵的行列式。设A是一个n阶矩阵,若存在另一个n阶矩阵B,耐陆尘使得:AB=BA=E,则称方阵A可逆昌禅,并称方阵B是A的逆矩阵。
性质:
逆矩阵的唯一性。若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1。
n阶方阵A可逆的充分必要条件是r(A)=m。对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。
任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵。满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。
五、矩阵的逆怎么计算?
求矩阵的逆常用的有如下三种做法。经济数学团队帮你解答,请及时采纳。谢谢!
一、公式法:A的逆阵=(1/|A|)A*,其中A*是A的伴随阵。
二、初等变换法:对分块矩阵(A,E)做行初等变换,前半部分A化成单位阵E时,后半部分E就化成了A的逆阵。
三、猜测山岁法:如果能通过已知条件得出AB=E或BA=E,逗歼睁则B就改判是A的逆矩阵。
六、怎么求逆矩阵?
逆矩阵求法有三种,分别是伴随矩阵法、初等变换法和待定系数法。
一、伴随矩阵法。根据逆矩阵的定义(对于n阶方阵A,如果有一个n阶方阵B满足AB=BA=E,则A是可逆的。),可以携或厅得出逆矩阵的计算公式:A^(-1)=1/|A|乘以A*,其中,A*为矩阵A的伴随矩阵。例题如下:
注:用伴随矩阵法计算逆矩阵时需要运用代数余子式和余子式的相关知识,即代数余子式(Aij)和余子式(Mij),其中,i表示第几行,j表示第几团漏列。
二、初等变换法。根据矩阵初等行变换的计算方式,然后引入单位矩阵E(矩阵对角线所对应的辩隐三个数字均为1,其他数字均为0的矩阵)。矩阵 A与单位矩阵E组成一个大矩阵,而后通过行变换将原来A的位置转变为E,此时,变换后的E就是所求的逆矩阵。
三、待定系数法。根据矩阵定义的推论,利用矩阵A乘以它的逆矩阵A^(-1)等于单位矩阵E的计算公式求得逆矩阵的方法。这种计算过程繁琐,需要列多组方程组,耗时,不建议使用。
题主可根据以上三种计算方法计算逆矩阵,希望对题主有帮助。