一、数学,调和数列,特点,性质,公式
定义1:自然数的倒数组成的数列,称为调和数列.
定义2:若数列{an}满足1/a(n+1)-1/an=d(n∈N*,d为常数),则称数列{an}调和数列
人们已经研究它几百年了.但是迄今为止没有能得到它的求和公式只是得到它的近似公式(当n很大时):
1+1/2+1/3+......+1/n≈lnn+C(C=0.57722......称作欧拉初始,专为调和级数所用,至今不知是有理数还是无理数)
人们倾向于认为它没有一个简洁的求和公式.
但是,不是因为它是发散的,才没有求和公式.相反的,例如等差数列是发散的,公比的绝对值大于1的等比数列也是发散的,它们都有求和公式.
当n→∞时
1+1/2+1/3+1/4+
…
+1/n
这个级数是发散的简单的说,结果为∞
------------------
用高中知识也是可以证明的,如下:
1/2≥1/2
1/3+1/4>1/2
1/5+1/6+1/7+1/8>1/2
……
1/[2^(k-1)+1]+1/[2^(k-1)+2]+…+1/2^k>[2^(k-1)](1/2^k)=1/2
对于任意一个正数a,把a分成有限个1/2
必然能够找到k,使得
1+1/2+1/3+1/4+
…
+1/2^k>a
所以n→∞时,1+1/2+1/3+1/4+
…
+1/n→∞
二、数学上的「调和」究竟是什么含义?
数学上的「调和」究竟含义:调和在调和函数、调和级数、调和平均值等中均是同一个意思,就是1/x。
调和级数是各项倒数为等差数列的级数,各项倒数所成的数列(不改变次序)为等差数列。从第2项起,它的每一项是前后相邻两项的调和平均,故名调和级数。
积分判别法
通过将调和级数的和与一个瑕积分作比较可证此级数发散。考虑长方形的排列。每个长方形宽1个单位、高1/n个单位(换句话说,每个长方形的面积都是1/n)。
注意后一个级数每一项对应的分数都小于调和级数中每一项,而且后面级数的括号中的数值和都为1/2,这样的1/2有无穷多个,所以后一个级数是趋向无穷大的,进而调和级数也是发散的。
从更广泛的意义上讲,如果An是全部不为0的等差数列,则1/An就称为调和数列,求和所得即为调和级数,易得,所有调和级数都是发散于无穷的。