一、菱形的定义性质和判定

定义

一组邻边相等的平行四边形叫做菱形

性质

对角线互相垂直且平分;

四条边都相等;

对角相等,邻角互补;

每条对角线平分一组对角,

菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形

在60°的菱形中,短对角线等于边长,长对角线是短对角线的√3倍。

菱形具备平行四边形的一切性质。

[判定

一组邻边相等的平行四边形是菱形

四边相等的四边形是菱形

关于两条对角线都成轴对称的四边形是菱形

对角线互相垂直且平分的四边形是菱形.

依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形) ,对角线相等的四边形的中点四边形定为菱形。

菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。

二、菱形的定义、性质与判定

1、菱形的定义:一组邻边相等的平行四边形叫菱形。

2、菱形的性质:菱形的四条边都相等,对角相等;对角线互相垂直且平分,且每条对角线平分一组对角;3、菱形的判定:四边相等的四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相垂直且平分的四边形是菱形。